翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hessian curve : ウィキペディア英語版
Polar curve

In algebraic geometry, the first polar, or simply polar of an algebraic plane curve ''C'' of degree ''n'' with respect to a point ''Q'' is an algebraic curve of degree ''n''−1 which contains every point of ''C'' whose tangent line passes through ''Q''. It is used to investigate the relationship between the curve and its dual, for example in the derivation of the Plücker formulas.
==Definition==
Let ''C'' be defined in homogeneous coordinates by ''f''(''x, y, z'') = 0 where ''f'' is a homogeneous polynomial of degree ''n'', and let the homogeneous coordinates of ''Q'' be (''a'', ''b'', ''c''). Define the operator
:\Delta_Q = a+b+c.
Then Δ''Q''''f'' is a homogeneous polynomial of degree ''n''−1 and Δ''Q''''f''(''x, y, z'') = 0 defines a curve of degree ''n''−1 called the ''first polar'' of ''C'' with respect of ''Q''.
If ''P''=(''p'', ''q'', ''r'') is a non-singular point on the curve ''C'' then the equation of the tangent at ''P'' is
:x(p, q, r)+y(p, q, r)+z(p, q, r)=0.
In particular, ''P'' is on the intersection of ''C'' and its first polar with respect to ''Q'' if and only if ''Q'' is on the tangent to ''C'' at ''P''. Note also that for a double point of ''C'', the partial derivatives of ''f'' are all 0 so the first polar contains these points as well.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Polar curve」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.